Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mars Analysis
  • Published:

Assessment of Mars Exploration Rover landing site predictions

Abstract

Comprehensive analyses of remote sensing data during the three-year effort to select the Mars Exploration Rover landing sites at Gusev crater and at Meridiani Planum correctly predicted the atmospheric density profile during entry and descent and the safe and trafficable surfaces explored by the two rovers. The Gusev crater site was correctly predicted to be a low-relief surface that was less rocky than the Viking landing sites but comparably dusty. A dark, low-albedo, flat plain composed of basaltic sand and haematite with very few rocks was expected and found at Meridiani Planum. These results argue that future efforts to select safe landing sites based on existing and acquired remote sensing data will be successful. In contrast, geological interpretations of the sites based on remote sensing data were less certain and less successful, which emphasizes the inherent ambiguities in understanding surface geology from remotely sensed data and the uncertainty in predicting exactly what materials will be available for study at a landing site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Portion of the panorama obtained from the Spirit landing site, showing the moderately rocky, relatively smooth plain predicted from remotely sensed data.
Figure 2: Image of the Meridiani plain showing its dark, relatively dust- and rock-free plain, as predicted by orbital remote sensing data.
Figure 3: THEMIS thermal inertia image in colour overlaid on a THEMIS visible image of Spirit landing area.
Figure 4: Rock size-frequency distributions at three locations along the Spirit traverse, VL1, VL2 and MPF landing sites.

Similar content being viewed by others

References

  1. Golombek, M. P. et al. Selection of the Mars Exploration Rover landing sites. J. Geophys. Res. 108(E12), 8072, doi:10.1029/2003JE002074 (2003)

    Google Scholar 

  2. Cabrol, N. A., Grin, E. A. & Landheim, R. Ma'adim Vallis evolution: geometry and models of discharge rate. Icarus 132, 362–377 (1998)

    Article  ADS  Google Scholar 

  3. Kuzmin, R., et al. Geologic map of the MTM-15182 and MTM-15187 quadrangles, Gusev crater-Ma'adim Vallis region, Mars. US Geol. Surv. Map I-2666 (US Geological Survey, Washington DC, 2000)

    Google Scholar 

  4. Arvidson, R. E. et al. Mantled and exhumed terrains in Terra Meridiani, Mars. J. Geophys. Res. 108(E12), 8073, doi:10.1029/2002JE001982 (2003)

    Google Scholar 

  5. Christensen, P. R. et al. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science 300(5628), 2056–2061 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Christensen, P. R. & Ruff, S. W. Formation of the hematite-bearing unit in Meridiani Planum: evidence for deposition in standing water. J. Geophys. Res. 109, E08003, doi:10.1029/2003JE002233 (2004)

    Article  ADS  Google Scholar 

  7. Arvidson, R. E. et al. Localization and physical properties experiments conducted by Spirit at Gusev crater. Science 305, 821–824 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Arvidson, R. E. et al. Localization and physical properties experiments conducted by Opportunity at Meridiani Planum. Science 306, 1730–1733 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Kass, D. M. et al. Analysis of atmospheric mesoscale models for entry, descent, and landing. J. Geophys. Res. 108(E12), 8090, doi:10.1029/2003JE002065 (2003)

    Article  Google Scholar 

  10. Magalhaes, J. A., Schofield, J. T. & Seiff, A. Results of the Mars Pathfinder atmospheric structure investigation. J. Geophys. Res. 104, 8943–8956 (1999)

    Article  ADS  Google Scholar 

  11. Smith, M. D. Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167, 148–165 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Smith, D. E. et al. Mars Orbiter Laser Altimeter (MOLA): Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689–23722 (2001)

    Article  ADS  Google Scholar 

  13. Crisp, J. A. et al. Mars Exploration Rover mission. J. Geophys. Res. 108(E12), 8061, doi:10.1029/2002JE002038 (2003)

    Article  Google Scholar 

  14. Christensen, P. R. & Moore, H. J. in Mars (eds Kieffer, H. H. et al.) 686–727 (Univ. Ariz. Press, Tucson, 1992)

    Google Scholar 

  15. Christensen, P. R. The spatial distribution of rocks on Mars. Icarus 68, 217–238 (1986)

    Article  ADS  CAS  Google Scholar 

  16. Mellon, M. T., Jakosky, B. M., Kieffer, H. H. & Christensen, P. R. High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus 148, 437–455 (2000)

    Article  ADS  Google Scholar 

  17. Kieffer, H. H. et al. Thermal and albedo mapping of Mars during the Viking Primary Mission. J. Geophys. Res. 82, 4249–4291 (1977)

    Article  ADS  CAS  Google Scholar 

  18. Fergason, R. L. & Christensen, P. R. Thermal inertia using THEMIS infrared data. Lunar Planet. Sci. XXIV abstr. 1785 (CD-ROM, Lunar and Planetary Institute, Houston, 2003)

    Google Scholar 

  19. Golombek, M. P. et al. Selection of the Mars Pathfinder landing site. J. Geophys. Res. 102, 3967–3988 (1997)

    Article  ADS  Google Scholar 

  20. Presley, M. A. & Christensen, P. R. Thermal conductivity measurements of particulate materials. 2. Results. J. Geophys. Res. 102, 6551–6566 (1997)

    Article  ADS  CAS  Google Scholar 

  21. Herkenhoff, K. E. et al. Textures of the soils and rocks at Gusev crater from Spirit's Microscopic Imager. Science 305(5685), 824–826 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Christensen, P. R. et al. Initial results from the Mini-TES experiment in Gusev crater from the Spirit rover. Science 305(5685), 837–842 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Moersch, J. E., et al. Comparison of orbital infrared observations and surface measurements by the Mars Exploration Rover Spirit at Gusev crater. Lunar Planet. Sci. XXXVI abstr. 2020 (CD-ROM, Lunar and Planetary Institute, Houston, 2005)

    Google Scholar 

  24. Herkenhoff, K. E. et al. Evidence for ancient water on Meridiani Planum from Opportunity's Microscopic Imager. Science 306, 1727–1730 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Bell, J. F. III et al. Pancam multispectral imaging results from the Spirit rover at Gusev crater. Science 305(5685), 800–806 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Ruff, S. W. & Christensen, P. R. Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res. 107(E12), 5127 doi:10.1029/2001JE001580 (2002)

    Article  Google Scholar 

  27. Bell, J. F. et al. Pancam multispectral imaging results from the Opportunity rover at Meridiani Planum. Science 306, 1703–1709 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Golombek, M. et al. Rock size-frequency distributions on Mars and implications for MER landing safety and operations. J. Geophys. Res. 108(E12), 8086, doi:10.1029/2002JE002035 (2003)

    Google Scholar 

  29. Shepard, M. K. et al. The roughness of natural terrain: A planetary and remote sensing perspective. J. Geophys. Res. 106, 32777–32795 (2001)

    Article  ADS  Google Scholar 

  30. Anderson, F. S. et al. Analysis of MOLA data for the Mars Exploration Rover landing sites. J. Geophys. Res. 108(E12), 8084, doi:10.1029/2003JE002125 (2003)

    Article  Google Scholar 

  31. Kirk, R. et al. High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow angle images. J. Geophys. Res. 108(E12), 8088, doi:10.1029/2003JE002131 (2003)

    Article  Google Scholar 

  32. Moore, H. J. et al. Soil-like deposits observed by Sojourner, the Pathfinder rover. J. Geophys. Res. 104, 8729–8746 (1999)

    Article  ADS  Google Scholar 

  33. Larsen, K. W., Haldemann, A. F. C., Jurgens, R. F. & Slade, M. A. Radar observations of recent Mars landing sites. Lunar Planet. Sci. XXXV abstr. 1050 (Lunar and Planetary Institute, Houston, 2004)

    Google Scholar 

  34. Hagfors, T. Backscattering from an undulating surface with applications to radar returns from the Moon. J. Geophys. Res. 69, 3779–3784 (1964)

    Article  ADS  Google Scholar 

  35. Evans, J. V. & Hagfors, T. Radar Astronomy 620 (McGraw-Hill, New York, 1968)

    Google Scholar 

  36. Squyres, S. W. et al. In-situ evidence for an ancient aqueous environment on Mars. Science 306, 1709–1714 (2004)

    Article  ADS  CAS  Google Scholar 

  37. Grant, J. A. et al. Surficial deposits at Gusev crater along Spirit rover traverses. Science 305, 807–810 (2004)

    Article  ADS  CAS  Google Scholar 

  38. Squyres, S. W. et al. The Spirit rover's Athena science investigation at Gusev crater, Mars. Science 305, 794–799 (2004)

    Article  ADS  CAS  Google Scholar 

  39. Castaño, R., et al. Autonomous onboard traverse science system. Proc. 2004 IEEE Aerospace Conf. (Big Sky, Montana, March 2004) abstr. 1375 (Institute of Electrical and Electronics Engineers, New York, NY, 2004)

    Google Scholar 

Download references

Acknowledgements

We are deeply indebted to the MER engineers for offering us the opportunity to test our landing site predictions with data from the surface of Mars. We acknowledge the contributions of R. Blanchard, P. Withers and the MER Atmospheric Advisory Team to the interpretations of the atmospheric entry information. M. Wyatt provided the THEMIS thermal inertia image. R. Castano, A. Castano, B. Bornstein and R. C. Anderson developed OASIS, R. Deen provided panoramas and associated range at correct resolution, and T. Stough and M. Judd provided rock counts. Research described in this paper was done by the MER project, Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Golombek.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golombek, M., Arvidson, R., Bell, J. et al. Assessment of Mars Exploration Rover landing site predictions. Nature 436, 44–48 (2005). https://doi.org/10.1038/nature03600

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03600

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing